Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system
نویسندگان
چکیده
With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a newmethod to solve the OLHS problem. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Parallel discrete differential dynamic programming for multireservoir operation
The curse of dimensionality and computational time cost are a great challenge to operation of large-scale hydropower systems (LSHSs) in China because computer memory and computational time increase exponentially with increasing number of reservoirs. Discrete differential dynamic programming (DDDP) is one of the most classical algorithms for alleviating the dimensionality problem for operation o...
متن کاملOptimization of cascade hydropower system operation by genetic algorithm to maximize clean energy output
Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently ope...
متن کاملA Nonlinear Model to Maximize Profit of Hydropower Plants in the Long-Run
The problem of hydropower plant profit maximization includes simultaneous programming of optimal utilization of water resources and participation in the power market. The present research was performed on a chain of hydropower plants within the Karoon river basin in Khuzestan Province (Iran) (i.e. Karoon 3, Karoon 1, and Masjid Soleyman hydropower plants). In this research nonlinear programmi...
متن کاملA genetic algorithm approach for a dynamic cell formation problem considering machine breakdown and buffer storage
Cell formation problem mainly address how machines should be grouped and parts be processed in cells. In dynamic environments, product mix and demand change in each period of the planning horizon. Incorporating such assumption in the model increases flexibility of the system to meet customer’s requirements. In this model, to ensure the reliability of the system in presence of unreliable machine...
متن کاملA Defined Benefit Pension Fund ALM Model through Multistage Stochastic Programming
We consider an asset-liability management (ALM) problem for a defined benefit pension fund (PF). The PF manager is assumed to follow a maximal fund valuation problem facing an extended set of risk factors: due to the longevity of the PF members, the inflation affecting salaries in real terms and future incomes, interest rates and market factors affecting jointly the PF liability and asset p...
متن کامل